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Abstract. The geometric structure of grain boundaries in nanocrystalline Pd has been analysed
in terms of power-law relationships. The power laws yielded exponents that were interpreted
as fractal-like dimensions. The box-counting fractal dimension,d2d , was computed for three
images digitized from published transmission electron micrographs; the average result was
d2d = 1.70± 0.06. An average site occupation probability,p, was estimated for the lattices
in the images, by determining the relationship betweenp andd2d for pseudo-random fcc lattices.
The results of further numerical simulations suggested that the grain boundaries had a box-counting
fractal dimension ofd3d = 2.4±0.3. The extent to which fractal theory is valid for nanocrystalline
Pd is evaluated.

1. Introduction

We were recently reminded (Avniret al 1998) that a physical system might be said to have a
fractal structure only if it could be modelled by an intrinsically scale-free theory. This criterion
is fulfilled by many grain aggregates. Cluster–cluster aggregation is essentially a scale-free
process, since clusters of a range of sizes may stick together (Linet al 1989). The resulting
structure may be described as fractal-like if it is statistically self-similar or self-affine over a
range of magnifications (Kjems 1996, p 315).

Studies using a variety of experimental methods (referred to by Lindsayet al 1989)
have found evidence of fractal-like mass distributions in colloidal aggregates. The formative
processes of such mass distributions have been modelled (Lindsayet al 1989) in terms of
diffusion- and reaction-limited cluster–cluster aggregation. Single-particle diffusion-limited
aggregation may lead to more complex, possibly self-affine, structure (Lindsayet al 1989).

Fractal-like mass distributions have also been observed in aggregates of evaporated
ultrafine clusters. These include loose crystallites condensed at a cold finger (Siegel and
Eastman 1988), crystallites lightly compacted at 100–7000 Pa (Schleicheret al 1995), and
amorphous grains consolidated at 1.6 GPa (Sturmet al 1995). It is worthwhile to inquire
whether fractal-like structure exists in another type of material made from aggregates of
ultrafine clusters: nanocrystalline matter, made by inert-gas condensation of ultrafine grains
followed by compaction.

In this paper, power laws and fractal theory are used to analyse the mass distribution
in the grain boundaries of nanocrystalline Pd. The box-counting fractal dimension,d2d , is
calculated for several transmission electron micrograph (TEM) images of thinned slices of the
grain boundaries. From the value ofd2d , the probability of site occupation,p, is estimated from
numerical simulations of the grain boundaries. The value ofp is used to calculate the grain
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boundaries’ box-counting fractal dimension,d3d . The method leads to a reasonably accurate
first calculation ofd3d for nanocrystalline Pd. The results are used to evaluate the hypothesis
(Sturmet al1995) that compaction can produce fractal-like structure in grain boundaries. After
interpreting the data in terms of fractal theory, the validity of the interpretation is discussed
with reference to the resolution range of the calculations.

2. Method

Data have been obtained from TEMs in the literature. Several TEMs of grain boundaries in
nanocrystalline Pd were taken by Thomaset al (1989). The specimens had been made by
inert-gas condensation followed by compaction in two stages (Siegel and Eastman 1988). The
grains were initially consolidated into a pellet using a very low pressure, then were compacted
by a pressure of approximately 1.4 GPa.

The published TEMs were digitized. Bitmaps of 602× 118 (figure 1(a)), 625× 118
(figure 1(b)) and 625× 114 (figure 1(c)) bits were obtained. The scale of each image was
approximately 1 bit= 10−11 m. For each image,d2d was calculated using a box-counting
program written inMathematica(Wolfram 1996). The box-counting program used the
power-lawno filled boxes∼ box lengthd2d . The relationship was approximated by varying
the box length from 1 bit up to one quarter of the width of the image; this corresponded to
approximately 1.5 decades (powers of 10) of resolution. The tally of filled but incomplete
boxes, located at two edges of each image, was weighted by half.

Numerical calculations were carried out to determine the approximate relationship
betweend2d andp for the images of the grain boundaries. The calculations, made using
Mathematica(Wolfram 1996), were performed for matrices which represented lattices that
had approximately the same crystallographic structure as the images. The atomic structure
of each tilt boundary was approximated as a{100} plane in a face-centred-cubic (fcc) lattice.
Pseudo-random lattices of 15× 15 sites were constructed for 14 values ofp in the range
0.01–1.00, then represented in close-packed form. The close-packed forms were converted to
bitmap files containing 283× 283 elements. By applying the box-counting program to the
bitmaps that corresponded to each value ofp, the value ofd2d was calculated as a function of
p. The box length was incrementally increased from 1 to 71 bits.

Further numerical simulations were performed to determine the relationship betweenp

andd3d . The effect ofp ond3d was determined for pseudo-random matrices generated using
Mathematica(Wolfram 1996). The box-counting program was modified to calculated3d for
three-dimensional systems. The value ofd3d was calculated for 14 values ofp in the range
0.01–1.00. Each matrix represented an fcc lattice with 15× 15× 15 sites, in which each site
consisted of a block of 10× 10× 10 bits. The box-counting program increased the length of
boxes from 1 to 37 bits in steps of 1 bit. The value ofd3d was calculated from an approximation
to the power-lawno filled boxes∼ box lengthd3d . The tally of filled but incomplete boxes, at
two edges of each image, was weighted by half.

3. Results

The digitized images of the grain boundaries in nanocrystalline Pd are shown in figure 1.
The results of the box-counting calculations, listed in table 1, had an average value of
d2d = 1.70± 0.06. Manual box-counting yielded the valued2d = 1.7± 0.1 for the image in
figure 1(a), confirming the result that had been calculated using the box-counting program.

The box-counting results for the simulated lattices (figure 2) showed thatd2d increases
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(a)

(b)

(c)

Figure 1. Grain boundaries in nanocrystalline Pd. The images were digitized from TEMs in the
literature (Thomaset al 1989) and have been clipped to the same size. The (a), (b) and (c) TEMs
had different magnifications. Black (atoms) and white are reversed, compared to the originals.

Table 1. Computed box-counting fractal dimensions of the named images.

Figure d2d

1(a) 1.70± 0.04
1(b) 1.60± 0.11
1(c) 1.79± 0.03

with increasingp. The data was fitted by an equation of approximatelyd2d = 1.9 + 0.20 lnp.
The calculated value ofd2d was not equal to 2 atp = 1. When the box length became large,
the number of filled boxes remained constant over small ranges of box lengths, altering the
gradient of the fitted line despite the maximum box length being set to a relatively small fraction
of the image width. The fitted equation deviates from the data in the range ofp = 0.2–0.3, but
appears to be reasonably accurate near the box-counting result ofd2d = 1.70± 0.06. Using
the fitted equation ford2d , it was found that the grain boundaries in figure 1 had an average
site occupation probability ofp = 0.4± 0.1.

When the box-counting program was applied to the simulated fcc lattices, it was found
that d3d increased with increasingp. The relationship between the two quantities was
approximatelyd3d = 2.7+0.29 lnp (figure 2). Atp = 0.4±0.1, which was the average value
for the images in figure 1, the corresponding value ofd3d was 2.4±0.1. However, the result was
made more uncertain by the effect of large box lengths on the data and gradient, demonstrated
by the fact thatd3d was not equal to 3 atp = 1. The final result wasd3d = 2.4± 0.3.

4. Discussion

It is reasonable to consider the possibility thatd2d andd3d had non-integer values due to
the presence of fractal structure. Fractal structures can be formed by the same processes
which were involved in the synthesis of the nanocrystalline specimens: condensation
(Siegel and Eastman 1988), light compaction (Schleicheret al 1995) and heavy compaction
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Figure 2. Relationship betweenp and the scaling exponent of the mass distribution on an fcc
lattice. Diamonds:d2d versusp. Squares:d3d versusp. The solid curves are the fitted curves,
described by the equations given in the text.

(Sturmet al 1995). Furthermore, the formation of the grain boundaries may have involved
some cluster–cluster aggregation, which is a scale-free phenomenon.

Before fractal theory is invoked, however, the mass distribution must be shown to behave
according to a power-law over a range of resolutions. A power-law analysis of the images in
figure 1 was justified by the low uncertainties in the calculated values ofd2d (table 1). Although
the measured range of resolutions was rather small, it is acceptable within the current usage of
fractal terminology. Recently, Avniret al(1998) reviewed a selection of studies in which fractal
theory had been applied to physical systems. The scaling ranges were typically between 0.5 and
2.0 decades, and had a median value of 1.3 decades. For example, in a previous study of fractal
structures in Pd (Schleicheret al 1995), the measurement range spanned approximately one
half of a decade. Bihamet al (1998) have observed that such limited-range fractal structures
are abundant in nature. However, the actual range of the self-similarity in nanocrystalline Pd
may be greater than the measured range. This could be tested in future work by comparing
the fractal-like dimension of the grain boundaries to that of the entire compacted aggregate.

The observation that fractal structure can exist after compaction is consistent with the
results of previous studies. Even though the grains may slide and become rearranged during
compaction (Sturmet al 1995), the rearrangements may be relatively small. For example,
aggregates of ultrafine Pd grains have fractal-like structures after light compaction in pressures
of 100–7000 Pa (Schliecheret al 1995). The scaling exponent of the radial mass distribution,
Df , was calculated to be 2.54–2.75 from the particles’ mobility and inertia (Schliecheret al
1995). The range of values ofDf lies within the uncertainty range of 2.1–2.7 which was
calculated in the present study. The similarity between the values ofd3d andDf suggests
that fractal-like structures can form over a range of compaction pressures, and that the fractal
dimension might not be greatly affected by the compaction pressure.

5. Conclusions

The mass distribution in nanocrystalline Pd grain boundaries is non-Euclidean and has
fractal-like characteristics. The interpretation of the scaling exponent as a fractal-like
dimension is justified by the similarity between its value and those of agglomerates with fractal
structures, and by the fact that the grain boundaries’ formation process probably involved
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some cluster–cluster aggregation. Thinned slices of the grain boundaries, prepared for TEM
experiments, have a box-counting dimension of approximatelyd3d = 2.4± 0.3, while their
images have a box-counting dimension ofd2d = 1.70± 0.06.
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